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ABSTRACT: It is well known that randomly perturbing an atmospheric model’s diabatic tendencies can increase its prob-
abilistic forecast skill, mainly by increasing the spread of ensemble forecasts and making it more consistent with the errors
of ensemble-mean forecasts. Less obvious and less well established is that such perturbations can also reduce the errors of
the ensemble-mean forecasts and improve the model’s mean climate, variability, and sensitivity to forcing. A clear reduc-
tion in ensemble-mean forecast errors is demonstrated here in large ensembles of 15-day forecasts made with NOAA’s
Global Forecast System model. The nearly ubiquitous reduction around the globe, obtained throughout the forecast range,
is interpreted as arising in effect from a modification of the model’s deterministic evolution operator by a stochastic noise-
induced drift. The effect is general in systems with state-dependent noise, and occurs even if the noise is not white. In the
atmospheric context considered here, the effect is suggested to arise largely from noise-induced reductions of mechanical
and thermal damping by chaotic boundary layer and cloud-radiative processes, which also tend to increase model sensitiv-
ity to forcing. The results presented here are consistent with many previous studies performed with models ranging from
simple stochastically forced models to comprehensive global weather and climate models. They suggest that the diabatic in-
teractions in most current global atmospheric models may not be sufficiently chaotic and this deficiency could be partly
remedied by specifying additional stochastic terms. Using some empirical guidance in such specifications may be unavoid-
able, given the generally intractable complexity of the diabatic interactions.

KEYWORDS: Atmospheric circulation; Climate prediction; Numerical weather prediction/forecasting; Probability
forecasts/models/distribution; Model errors; Model evaluation/performance

1. Introduction

Global atmospheric models have come a long way since
their initial development in the 1960s, leading to much better
weather forecasts and a better understanding of the general
circulation of the atmosphere including its mean, variability,
and sensitivity to forcing. Global atmospheric models are also
an integral part of Earth system models used for understand-
ing past climate variations and projecting future climate
changes. Given their central role, it is essential to continue im-
proving atmospheric models, whose errors continue to com-
promise weather and climate predictions. Our goal here is to
advance a case that a substantially chaotic but not necessarily
unresolved portion of atmospheric diabatic processes is likely
underrepresented in most such models and could be ac-
counted for approximately by specifying additional stochastic
terms in their evolution equations. The arguments presented
complement those in recent overview articles (Leutbecher
et al. 2017; Berner et al. 2017; Strommen et al. 2019; Palmer
2019) and draw additionally upon extensive sets of experi-
mental 15-day ensemble forecasts made by us with and without
stochastic terms in the Global Forecast System (GFS) model of
the National Oceanic and Atmospheric Administration (NOAA).

The robustness of our results, and especially of their interpretation
based on basic features of stochastically forced systems, suggest
their wide relevance in Earth systemmodeling.

Adding stochastic terms to a global atmospheric model’s
equations was originally motivated in weather prediction con-
texts, specifically by a desire to increase the spread (i.e., the
standard deviation) of ensemble forecasts in order to make it
more consistent with the errors of ensemble-mean forecasts,
which were (and still are) too often larger than anticipated
from the ensemble spread. Randomly perturbing a forecast
model’s diabatic tendencies was shown to be beneficial in this
regard (Buizza et al. 1999; Palmer et al. 2009), a basic result
confirmed in numerous subsequent studies (Leutbecher et al.
2017). Less obvious, and less well established, is that such ran-
dom perturbations can also reduce the errors of the ensemble-
mean forecasts. We show particularly clear reductions here in
our 15-day ensemble forecast experiments. The reductions are
nearly ubiquitous in several key atmospheric variables, and
throughout the forecast range, including near the 15-day limit of
daily weather predictability when initial conditions are nearly
forgotten and forecast errors are nearly saturated. We interpret
such improvements in ensemble-mean forecast skill as indicative
of model improvement through a crude accounting of chaotic di-
abatic processes in the atmosphere by stochastic perturbations
of the parameterized physical tendencies (SPPT) in the model.

In this context it is important to distinguish between model im-
provement and forecast improvement, although the two are obvi-
ously related. To some degree, probabilistic forecasts can be
improved without changing a model by improving initial and/or
boundary conditions, using larger forecast ensembles, andmaking
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a posteriori bias corrections based on past forecast error statistics.
Less intuitively, model improvement is also distinct from improv-
ing a model’s mean climate and variability through model tuning
(including “flux-correction” and “nudging” approaches). Tuning
can certainly improve some aspects of amodel’s climate, although
one cannot be certain to what extent this is achieved by introduc-
ing additional compensating model errors instead of reducing the
original model errors. By treating, in effect, the symptoms rather
than the causes of the original errors, tuning can degrade other as-
pects of a model’s climate. This is a concern especially in multi-
component systems such as the atmosphere, in which a model
error in one component can affect the behavior of another in just
a few hours (Klinker and Sardeshmukh 1992; Rodwell and
Palmer 2007).

To fix ideas and establish terminology, we define model
improvement here as introducing tendency correction terms
R in a model’s evolution equations as

dx/dt 5 a(x) 1 R, (1)

where x is the model state vector and a(x) is its uncorrected
tendency. One may think of specifying R as a sum of deter-
ministic and random terms

R ’ Rd(x) 1 B(x)h, (2)

where B(x) is a matrix and h is a vector (not necessarily of
the same dimension as x) with independent random compo-
nents hm, each with mean 0, variance 1, and an autocorrela-
tion time scale tm. The Rd term reflects an attempt to reduce
the model tendency error at each model time step. By con-
trast, since h is random, the B(x)h term can either decrease
or increase the tendency error at individual time steps, which
might make one question its corrective role. The answer is
that it can improve the conditional (i.e., the forecast) as well
as the unconditional (i.e., the “climate”) probability distribu-
tions of x including their mean, variance, skewness, and tails.
As already noted, there is strong evidence that such random
terms improve the forecast ensemble spread and some, albeit
less clear-cut, evidence that they also improve the ensemble
mean forecasts and the model’s climate. The effect on the en-
semble mean is evident even over short time intervals Dt, and
can be made explicit, if hmDt can be approximated as a random
walk fm

�����
2tm

√ ���
Dt

√
associated with Gaussian white noise inte-

grated over Dt, where fm is a standard Gaussian variable with
mean 0 and variance 1 (appendix). Defining bim 5 Bim

�����
2tm

√
,

the change Dxi in each component xi of x over Dt may then be
expressed (ignoring the Rd term for a moment) as

Dxi 5 [ai(x) 1 Di(x)]Dt 1∑
m
bim(x)fm

���
Dt

√
, (3)

where

Di(x) 5
1
2
∑
j
∑
m

­bim(x)
­xj

bjm(x)

is the noise-induced drift (see appendix for a simple deriva-
tion), which directly affects the deterministic dynamics and

hence the ensemble mean, whereas the
���
Dt

√
term represents a

Wiener process (i.e., a random walk) which directly affects
the ensemble spread. This noise-induced drift D contributes
to Rd in (1). It depends sensitively on ­B/­x, whereas the ef-
fect of the noise on the spread depends more robustly on B

itself. Note however that even if B is independent of x (i.e.,
even if the noise is “additive” and not “multiplicative”) it can
still affect ensemble-mean forecasts at longer forecast ranges
as well as the model’s climate through formally second-order,
but not necessarily small, nonlinear modifications of a(x) asso-
ciated with, say, altered resolved fluxes. We will find the
Gaussian white noise approximation (3) to be useful for un-
derstanding the impacts of even the red noise perturbations
specified in our experiments and also for distinguishing be-
tween multiplicative and additive noise effects.

Figure 1 gives a preview of the beneficial impacts of the random
tendency perturbations specified in our GFS experiments on both
the mean and spread of 15-day ensemble forecasts of several key
atmospheric variables (upper-tropospheric vorticity, midtropo-
spheric vertical velocity, near-surface air temperature, and column
precipitable water). Results are shown for 80-member ensemble
forecasts generated both with and without random perturbations
for 80 distinct forecast cases in the January–March 2016 period. A
more detailed presentation will be made in section 4. The random
perturbations are introduced in the tendency equation for each
model component xi as

dxi/dt 5 Ai 1 (1 1 miri)Pi, (4)

where Ai(x) and Pi(x) are the adiabatic and parameterized di-
abatic tendencies. Note that the vertical diffusion of momen-
tum, temperature, and specific humidity is included in the
diabatic tendency and is perturbed, whereas the horizontal
diffusion of these variables is included in the adiabatic
tendency and is not perturbed. The random numbers ri are
Gaussian deviates with zero mean and variance 0.8, and mi is
a vertical weight function specified to be 1 everywhere except
near highest and lowest model levels where it is tapered to 0.
The ri are constant in vertical columns and have specified
horizontal and temporal correlation scales of Lr 5 500 km
and tr 5 6 h, respectively. Note that these scales are much
larger than the spatial and temporal discretization of the
model (grid size ;70 km; time step;20 min for dynamics and
;10 min for physics), so the noise cannot be considered as
accounting only for subgrid scale chaotic feedbacks on the
resolved scales. Equation (4) is of the form of (1), as can be
seen by writing Ai(x)1 Pi(x)5 ai(x) and

Pi(x)miri 5∑
m
Pi(x)Cimhm 5 [B(x)h]i,

where C is a constant matrix related to the spatial covariances
of the random perturbations.

Consistent with numerous previous studies, Fig. 1 shows an
increase in the forecast ensemble spread by introducing the
random tendency perturbations. More unusually, it also shows
a reduction in the ensemble-mean forecast error throughout
the 15-day forecast range. Evidently, multiplying the parame-
terized diabatic tendency of each model variable at each grid
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point at each time step by a random factor approximately be-
tween 0 and 2 not only does not degrade the ensemble-mean
forecasts, but actually improves them. Understanding the basic
reasons for this, and the implications for improving weather and
climate models, are our chief concerns in this paper.

Section 2 discusses how the impacts of model changes on
forecast error/spread relationships such as in Fig. 1 may be in-
terpreted in the context of simple stochastically forced linear
systems. Section 3 provides a perspective on how a change in
stochastic forcing can affect the mean, variance, skewness,
and tails of the stationary “climate” probability distribution of
a system, again in the context of simple linear and nonlinear

systems for which analytical expressions can be derived. Section 4
provides more details of our GFS experiments, demonstrates the
near-ubiquity of the beneficial impacts of the random perturba-
tions, and assesses the relative importance of randomness in dif-
ferent aspects of the model physics. It also shows the impacts of
the random perturbations on the non-Gaussian aspects of the
forecast distributions such as their skewness and kurtosis, which
are important for assessing extreme anomaly risks (Sardeshmukh
et al. 2015). Section 5 attempts to gain further understanding of
the GFS results by considering the impacts of stochastic mechani-
cal and thermal damping, and a discussion and summary follow in
section 6.

FIG. 1. Global root-mean-square error of ensemble-mean forecasts (RMSE) and forecast ensemble spread (spread)
of 80-member ensemble forecasts from 80 different start times in the January–March 2016 period made using the
GFS model. Results are shown for (a) 200-hPa vorticity, (b) 500-hPa vertical p-velocity omega, (c) column-integrated
precipitable water, and (d) 2-m air temperature T2m. In each of (a)–(d), the highest and lowest curves show, respec-
tively, the RMSE and spread of the forecasts without stochastic parameterization in the model. When the stochastic
parameterizations are included, the RMSE curves are lowered and the spread curves are raised, reducing the error/
spread gap in each panel.
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2. Interpreting model improvement in a forecast error/
spread framework

A gap between the ensemble-mean forecast error and
ensemble spread growth curves compromises probabilistic
predictions. Its reduction through model changes does not,
however, always indicate model improvement. We argue be-
low that to qualify unambiguously as model improvement, a
smaller gap must also generally be associated with a reduction
in the ensemble mean forecast error.

Consider the simplest univariateMarkov systemof the form (1),

dx/dt 52lx 1 Bh, (5)

where x, l, B, and h are scalars and h is Gaussian white noise.
There are only two model parameters here, a linear damping
rate l and a stochastic forcing amplitude B, whose values for
an imperfect model differ from the true values ltr and Btr.
The statistics of this system are Gaussian, with long-term
means hxi 5 0 and long-term variances s2 5 B2/(2l) and
s2
tr 5 B2

tr/(2ltr). An ensemble-mean forecast evolves from an
initial condition xin as

x 5 hx(t)|xini 5 e2ltxin: (6)

It can then be shown that the squared ensemble-mean forecast
error h«2i5 h(x 2 xobs)2i and ensemble spread hs2i5 h(x2 x)2i
averaged over all initial conditions evolve as

h«2i(t) 5 s2
tr [1 1 e22lt 2 2e2(ltr1l)t] and (7)

hs2i(t) 5 s2 (1 2 e22lt ): (8)

These curves are identical for a perfect model with l 5 ltr,
B 5 Btr, and s2 5 s2

tr . One does not know them if one does
not know ltr and Btr, but one does know their asymptotic
value s2

tr 5 s2
obs from the system observations xobs. One

can also use those observations to determine the forecast
error curve directly for an imperfect model, without know-
ing the right-hand side of (7). Note that this error curve
always lies above the perfect model error curve if l Þ ltr.
We consider the question of what can be inferred about
model improvement from model changes given only the
true s2

tr and the original and modified forecast error and
spread curves.

Figure 2 illustrates scenarios for imperfect models in which
either l or B or both differ from their true values, so the gap
between the error and spread curves is not zero. For brevity
we focus on models for which s2 is smaller than s2

tr . To close
the error/spread gap, the two must be made equal. One may
accomplish this by increasing B, decreasing l, or doing both.
But would all of these actions result in model improvement, that
is, bring the model’s l and B closer to ltr and Btr? Figure 2 con-
siders four possibilities. In Fig. 2a, l 5 ltr and B Þ Btr. In this
case the error curve is already identical to the perfect model

FIG. 2. (a)–(d) The problem with inferring model improvement from a reduction in the forecast error/spread gap.
The figure illustrates the impact of changing (solid vertical segments) the damping rate l and/or the stochastic forcing
amplitude B of imperfect univariate linear Markov models on the RMSE, spread, and the error/spread gap in four dif-
ferent scenarios. For the perfect model, the RMSE and spread curves are identical, as indicated by the thick cyan
curve in each panel. The figure shows that, even in this simplest model setting, a reduction in the error/spread gap
from model changes is an ambiguous indicator of model improvement. The gap is reduced in all four scenarios but is
associated with model improvement in only two of them [(a) and (d)], as discussed in the text.
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error curve (although one does not know this), and increasing B
to make s2 5 s2

tr would make the spread curve identical to the
error curve. One would then know that one has arrived at a per-
fect model. If, however, one were to change l but not B to
make s2 5 s2

tr, as in Fig. 2b, one would still reduce the error/
spread gap but not be able to close it because l would now be
incorrect. In Fig. 2c, l Þ ltr and B5 Btr. In this case changing B
to make s2 5 s2

tr would also reduce the error/spread gap, but
one would not be able to close it because both l and B would
now be incorrect. Figure 2d considers the most general possibil-
ity, that both l Þ ltr and B Þ Btr. If one suspects this to be the
case, one would consider changing both to make s2 5 s2

tr, but
this could clearly be done in an infinite number of ways. Only
some of them would reduce the error (by bringing l closer to
ltr), and only one would result in closing the gap at all forecast
ranges.

Even this simple thought experiment highlights the fact
that a reduction in the forecast error/spread gap is by itself an
ambiguous indicator of model improvement. The gap is re-
duced in all four cases considered in Fig. 2, but is associated
with model improvement in only two of them (Figs. 2a,d). In
particular, a reduction in the gap obtained by only increasing
the spread does not unambiguously indicate model improve-
ment: it is associated with an improved model in one case
(Fig. 2a) but a degraded one in another (Fig. 2c). One might
regard the scenarios depicted in Figs. 2a–c as unlikely, since
they are associated with either l or B already being perfect.
In the more likely scenario of Fig. 2d in which both l and B
are imperfect, reductions in both the gap and ensemble-mean
forecast error would be necessary to establish model improve-
ment. Introducing stochastic tendency perturbations in the
GFS model evidently satisfies these two conditions in Fig. 1.
In the context of Fig. 2d, the effect of the stochastic ten-
dency perturbations in our GFS experiments is not only to
increase the spread by effectively increasing B, but also to
reduce the error by effectively correcting l through the
noise-induced drift in (3) [or more transparently, through
(18) in section 5].

Note that the long-term mean “climate” response of the
model (5) to a steady forcing F is hxi 5 F/l, which is incor-
rect if l Þ ltr. A reduction in the ensemble-mean forecast
error, which can only be achieved by bringing an imperfect
model’s l closer to ltr, would thus also imply an improve-
ment in the model’s mean climate and sensitivity to external
forcing.

3. The basic effects of additional stochastic forcing

It is notable in Fig. 1 that the reductions in both the en-
semble-mean forecast error and the error/spread gap occur
throughout the 15-day forecast range, including beyond day
10 when the error and spread have begun to saturate. This
suggests a beneficial impact of the stochastic perturbations
on even the long-term climate statistics of the model. As in
the previous section, one can gain some insight into this as-
ymptotic behavior by considering the impact on the station-
ary probability distributions of simple dissipative linear and
nonlinear 1D systems of the form (1),

dx/dt 5 a(x) 1 B(x)h, (9)

where x, a, B, and h are scalars and h is Gaussian white noise.
The Fokker–Planck equation governing the evolution of the
probability density function p(x|xin) from an initial condition
xin is

­p
­t

52
­

­x
a 1

1
4
­B2

­x

( )
p

[ ]
1

1
2

­2

­x2
(B2p) (10)

in which the noise-induced drift (1/4)­B2/­x has been expli-
citly included. The stationary probability density p(x) is
obtained by setting the time derivative to zero and rear-
ranging to give

­

­x
(B2p2) 5 4p2a (11)

whose solution is

p(x) 5 p(x0)
B2(x0)
B2(x)

[ ]1/2
exp

�x

x0

2a(x′)
B2(x′) dx′ (12)

in which the arbitrary x0 may be chosen to be the location of
the global maximum of p(x), where a5 (1/4)­B2/­x.

It is important to recognize that although a(x) and B2(x)
uniquely determine p(x), the converse is not true. Indeed, an
infinite number of physically meaningful [a(x), B2(x)] function
pairs can be consistent with the same p(x). As is clear from
(11), for any density function p(x) one can solve for B2(x)
given a(x), and vice versa. This means, for example, that a
nonlinear multiplicative noise-driven system [a(x), B2(x)] has
the same p(x) as a nonlinear additive noise-driven system

[â(x), b2] 5 a(x) 2 1
4
­B2(x)
­x

[ ]
b2

B2(x) , b
2

{ }

with a constant b2. Resolving such ambiguities is important
for model improvement, that is, for bringing a model’s errone-
ous [a(x), B2(x)] pairing closer to the “true” pairing.

Increasing the stochastic forcing by a factor g $ 1 to
B̃2 5 gB2 changes the stationary p(x) in (12) to

p̃(x) 5 p̃(x0)
p(x)
p(x0)
[ ]1/g

B2(x0)
B2(x)

[ ](g21)/(2g)
: (13)

If the exponential factor on the right-hand side on (12) is less
than 1, as it is in dissipative systems in which a(x0) 5 0, then it
can be shown that the pdfs in (13) satisfy the relationships

0 #
p(x)
p(x0)

#
p̃(x)
p̃(x0)

# 1 and (14a)

p̃(x0)
p(x0)

#
p̃(x)
p(x) : (14b)

Relationship (14a), together with the fact that the integrals of
both p(x) and p̃ (x) over all x are 1, implies that p̃ (x) is
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smoother and broader than p(x), and relationship (14b) im-
plies that this smoothing reduces the peak density at x0 by a
larger factor than at any other x.

Figure 3 schematically illustrates the impact of g $ 1 on the
p(x) of systems with four different types of [a(x), B2(x)] pair-
ing, namely,

A}a linear system with additive noise:

[2a0x, b
2], (15a)

B}a linear system with multiplicative noise:

[2a0x, (Ex 1 G)2 1 b2], (15b)

C}a nonlinear system with additive noise:

[â(x), b2 ], and (15c)

D}a nonlinear system with multiplicative noise:

[a(x), B2(x)], (15d)

where a0, E,G, and b2 are positive constants. System A, which
is the same as in the previous section, is linearly damped and
forced with additive noise. System B is also linearly damped,

but is forced with multiplicative noise. The specific form of
this multiplicative noise is consistent with a combination
of correlated additive and multiplicative (CAM) noises,
whose relevance in understanding observed skewed and heavy-
tailed atmospheric probability distributions was highlighted
by Sardeshmukh and Sura (2009), Sardeshmukh and Penland
(2015), and Sardeshmukh et al. (2015). Systems C and D are
dissipative nonlinear systems forced by additive and multipli-
cative noises, respectively, and have the same stationary p(x).

Increasing the stochastic forcing increases the variance in
all four systems. In the simplest system A, however, this is all
that happens: there is no change in the mean or shape (skew-
ness, kurtosis, etc.) of the distribution as in the other three
systems. The mean change in the other three systems is in the
direction of the original skew, that is, positive in the cases il-
lustrated. The skewness increases in systems B and D with
multiplicative noise, but decreases in system C with additive
noise. This contrast is interesting, and important for distin-
guishing between system C and system D, considering that
both have the same original p(x). Consistent with (13) and
(14), the altered p̃(x) in system C is more symmetric about the
new mean than p(x) is about the old mean, and is therefore
less skewed, whereas in system D the altered p̃(x) is more

FIG. 3. (a)–(d) The impact of increasing the magnitude of the stochastic forcing in four different types of univariate
systems on their stationary probability density function (pdf). In each of (a)–(d), the solid and dashed curves show
the pdf before and after the increase in the forcing. The long solid and dashed vertical lines show the pdf mean,
and the short solid and dashed vertical segments show the pdf maxima, before and after the forcing increase. Note
that the original pdfs are identical in systems C and D as shown in (c) and (d), respectively. The figure shows that the
variance increases in all four systems, but the impacts in the mean, skewness, and heaviness of the tails depend on
whether the noise forcing is additive or multiplicative, as discussed in the text.
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skewed. The basic reason for this increased skew (also in the
CAM-noise-driven system B) is that the relatively larger
B2(x) at large values of x makes the exponential factor in (12)
larger (i.e., closer to 1). Because of this, the mean shift in sys-
tem D is also larger than in system C.

The main message of Fig. 3 is that although increasing the
stochastic forcing of a system “obviously” increases the vari-
ance of its stationary probability distribution, the impacts on
the mean, shape, and tails of the distribution are more subtle
and depend on whether the stochastic forcing is additive or
multiplicative. The P(x)r tendency perturbations specified in
(4) in our GFS experiments are clearly multiplicative noises.
They affect the ensemble-mean forecasts throughout the fore-
cast range as well as the long-term mean due to noise-induced
drifts. They also increase the magnitude of the skewness and
kurtosis of the probability distributions in the GFS experi-
ments, as we show in the next section.

4. Impact of stochastic forcing in the GFS model

The details of our experimental setup and GFS model used
are given in two recent papers (Wang et al. 2019; Wang and
Sardeshmukh 2021) and will not be repeated here. Briefly, we
used a model version with horizontal and vertical resolutions
of T254 (;70 km) and 64 levels, respectively, and performed

15-day 80-member ensemble forecasts from 80 different start
times in the January to March 2016 period. Such ensemble
forecasts were generated both with and without stochastic
perturbations. As described in Wang et al. (2019), the Control
forecasts included, in addition to the stochastic tendency per-
turbations (SPPT), stochastic perturbations of the boundary
layer specific humidity itself (SHUM) at each model time step
that may be regarded as perturbations to the average humid-
ity tendency over the time step. Wang et al. (2019) ran the
forecasts out to only 7 days and did not consider the ensemble
spread. Wang and Sardeshmukh (2021) extended the fore-
casts to 10 days, but they restricted their focus to the 200-hPa
kinetic energy spectrum.

Figure 4 shows maps of the day-15 ensemble-mean forecast
error and ensemble spread for precipitation rate (Precip),
midtropospheric vertical pressure velocity omega (v500), and
near-surface air temperature (T2m) in the Control forecasts.
The v500 and T2m errors were defined with respect to reanal-
yses performed using the same GFS model in the data assimi-
lation algorithm (Wang et al. 2019), and the Precip errors
with respect to the NASA/GPM observations (Huffman et al.
2014). The reanalyses and observations have their own errors,
of course, and the ensemble-mean forecast error maps are
also derived from a smaller sample of 80 day-15 ensemble-
mean forecasts for the 80 forecast cases than the large sample

FIG. 4. (left) RMSE and (right) spread of the day-15 ensemble forecasts of (top) precipitation (12-h accumulations),
(middle) 500-hPa vertical p-velocity omega, and (bottom) 2-m air temperature in the Control GFS forecast ensem-
bles, which include the stochastic parameterizations in the model.
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of 6400 (580 3 80) individual ensemble member forecasts
used to construct the ensemble spread maps. Despite this, the
error and spreads maps are reassuringly similar, although a
general tendency for the error to be larger than the spread
even after including the stochastic perturbations is evident, as
was also seen in Fig. 1.

Figure 5 shows the impacts of the stochastic perturbations
on the day-15 error and spread, determined by subtracting
from Fig. 4 similar maps constructed from the parallel set of
ensemble forecasts made without the stochastic perturbations.
It shows relatively large increases in the spread of Precip and
v500 in the tropics and of T2m over the continents. These are
almost ubiquitously also associated with decreases of the en-
semble-mean forecast error.

The global reductions in the error/spread gap and ensem-
ble-mean errors shown in Fig. 1 are thus also associated with
local reductions. Interestingly, the error is reduced in even
some areas of decreased spread of Precip and v500, such as at
108N just east of the date line, in the region extending south-
eastward from central Brazil, and in the Gulf of Mexico.

These stochastic impacts are already evident early in the
forecasts, as illustrated in Fig. 6 for 200-hPa vorticity at day 1
and day 5. This circulation variable is of particular interest,
since its direct stochastic forcing, associated with the random-
ness only in the weak vertical diffusion in the free atmosphere
above the boundary layer, is very small in the control fore-
casts. The day-1 maps for vorticity closely resemble those for

v500 and Precip (not shown) and show that the impacts on
the spread and error occur earlier in the tropics than in mid-
dle and high latitudes. While this does not prove that the ex-
tratropical impacts are “induced” by the tropical impacts,
there is a hint that the impacts on the midlatitude spread are
relatively strong near the Pacific and Atlantic jet entrances,
consistent with noisy upper-tropospheric Rossby wave sour-
ces associated with perturbations to the tropical deep convec-
tion farther south (Sardeshmukh and Hoskins 1988). The
stochastic tropical influence on extratropical spread was more
cleanly demonstrated in Sardeshmukh (2005) in a numerical
experiment in which a GCM was stochastically perturbed
only in the tropics.

It is remarkable how the beneficial stochastic impacts on
the forecast error and spread are evident locally, without any
space–time filtering, even for variables with relatively small
horizontal correlation scales such as precipitation, vertical ve-
locity, and vorticity that are harder to predict than larger-scale
variables such as 850-hPa temperature (T850), zonal wind
(U850), or 500-hPa geopotential height (Z500). The beneficial
impacts of stochastic parameterizations on T850, U850, and
Z500 have been reported previously (e.g., Palmer et al. 2009;
Zhu et al. 2018). We obtain them in our GFS experiments as
well, as illustrated for T850 and Z500 at day 9 in Fig. 7. It is in-
teresting to see the impacts on Z500 even in the tropics, where
the anomalies of Z500 are very small and spatially almost
uniform.

FIG. 5. As in Fig. 4, but showing the impact of the stochastic parameterizations on the day-15 RMSE and spread.
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The stochastic perturbations also affect the skewness
S5 h(x2 x)3i/s3 and excess kurtosis K5 h(x2 x)4i/s4 2 3 of
the forecast ensembles, where x and s are the forecast ensem-
ble mean and spread. Figure 8 shows maps of S and K of Precip
in the day-15 control forecasts and how they are impacted by

the stochastic perturbations. Note that S and K are positive
everywhere, attesting to the skewed and heavy-tailed character
of precipitation distributions, and closely satisfy the K 5 1.5S2

property of gamma (Pearson type III) distributions that are
often a good fit to observational precipitation data. The

FIG. 6. As in Fig. 5, but showing the impacts of the stochastic parameterizations on the RMSE and spread of the
200-hPa vorticity at (top) day 1 and (bottom) day 5.

FIG. 7. As in Fig. 5, but for day-9 RMSE and spread of (top) 850-hPa temperature and (bottom) 500-hPa
geopotential height.
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substantial increases in the magnitudes of S and K in regions
of large S and K are consistent with this property, and help
satisfy it better in the control forecasts.

Figures 9 and 10 show similar results for v500 and for
T2m, respectively, in a similar format to Fig. 8. Note that
v500’ 2rgW500 is negative for upward motion, so the gener-
ally negative skewness of v500 implies positive skewness of
W500. The stochastic perturbations increase the magnitudes of
S and K of v500 almost everywhere in regions of large S and
K. The skewness of T2m shows a more complicated spatial
structure in Fig. 10, but the magnitudes of S and K are also
generally increased in regions of large S and K, although not
as clearly as in Fig. 9. Notably, the magnitudes of S and K are
reduced in some regions such as the northwest Pacific, Hudson
Bay, parts of the South Pacific convergence zone (SPCZ), and
the northern Andes.

Just as for the ensemble-mean forecast error and ensemble
spread, the stochastic impacts on S andK are also clearly evident
early in the forecasts, as shown at day 5 for v500 in Fig. 11.
They are very similar to those at day 15 shown in Figs. 5 and 9,
and are indeed somewhat larger, consistent with the argument
made by Penland and Sardeshmukh (2022) that such impacts on
forecast probability distributions are an inevitable feature of sys-
tems perturbed by multiplicative noise.

We also attempted to assess the relative importance of sto-
chasticity in different aspects of the model physics by succes-
sively switching off the perturbations to the parameterized

vertical diffusion, convection, and radiation tendencies and
the humidity in the Control forecasts.

Specifically, we generated three additional sets of 80-member
forecast ensembles by switching off 1) the stochastic vertical
diffusion tendencies (NO-VDSP), 2) the stochastic vertical
diffusion 1 convection 1 radiation tendencies (NO-SPPT), and
3) the stochastic SPPT 1 specific humidity (NO-SP). Figure 12
summarizes the results from these denial experiments in a simi-
lar format to Fig. 1. It shows that the stochastic perturbations in
all these processes make comparable contributions to increasing
the spread, decreasing the error, and reducing the spread/error
gap. The increased spreads of the thermodynamic variables T2m

and column precipitable water resulting from perturbing the
(mostly boundary layer) vertical diffusion and specific humidity,
respectively, are perhaps not surprising. Less obviously, these
perturbations also increase the spreads of the circulation varia-
bles v500 and 200-hPa vorticity and reduce the ensemble-mean
forecast error of all four variables in Fig. 12. It is also evident
that a large part of the total effect of SPPT on both the error
and spread is due to stochastic perturbations of the vertical
diffusion.

The additional dashed curve in all four panels in Fig. 12
shows that an almost identical reduction of RMSE by the sto-
chastic perturbations is obtained in the control forecasts if
only 40 of 80 members are used to calculate the ensemble
mean. In other words, the noise-induced drift is large enough
even at day 15 (when the ensemble mean anomaly is small as

FIG. 8. (top) Forecast ensemble skewness S and excess kurtosis K of precipitation at day 15 in the GFS Control en-
sembles. Results are not shown in the driest desert regions of high sampling uncertainty. Note that S and K for gamma
pdfs satisfy the relationship K 5 1.5S2, and the shading intervals are chosen to correspond to that relationship. The
similarity of the left and right panels thus shows that precipitation pdfs are approximately gamma distributions nearly
everywhere on the globe. (bottom) The impact of the stochastic parameterizations on S and K, which is to increase
the skew everywhere and to increase the heaviness of the pdf tails in the tropics and subtropics associated with the in-
creases of K in those regions.
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the ensemble mean forecasts converge to climatology) that its
impact can be reasonably well estimated using only 40 mem-
bers. This evidence that 40-member ensemble forecasts with
stochastic perturbations can be superior to 80-member ensem-
ble forecasts without stochastic perturbations has obvious
practical implications for reducing the computational costs of
ensemble forecasting.

We end this section noting that the impacts of stochastically
perturbing the diabatic physics in GCMs are well known to
be sensitive to the specified correlation length and time
scales Lr and tr of the perturbations and are generally found
to be smaller if these scales are reduced. Figure 13 illustrates
this by contrasting the impacts on the day-15 error and
spread of 200-hPa vorticity obtained using the default value

FIG. 9. As in Fig. 8, but for the day-15 ensemble skewness S and excess kurtosis K of the 500-hPa vertical
p-velocity v500.

FIG. 10. As in Fig. 9, but for 2-m air temperature T2m.
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of Lr 5 500 km in our Control forecasts with those obtained
using Lr 5 100 km in another ensemble of otherwise identical
forecasts. Similar weaker impacts using the smaller Lr were
also obtained for other variables (not shown).

5. Interpretation

The basic impacts of stochastic physics on the mean, variance,
skewness, and kurtosis of the GFS forecast ensembles can be re-
produced in simple one-dimensional systems with additive and
multiplicative noise forcing. As discussed in section 3, additive
noise generally increases the variance of such systems, but the
effects on the mean, skewness, and kurtosis are more subtle.
The simplest system in which such effects occur is the linear
system B in section 3,

dx/dt 52a0x 1 (Ex 1 G)h1 1 bh2, (16a)

which differs from the even simpler system A only in its inclu-
sion of the extra CAM-noise forcing (Ex1 G)h1. Here a0 and
b are positive constants, E and G are other constants that may
be positive or negative, and h1 and h2 are independent Gaussian
white noises. The system is probabilistically equivalent to the
system considered in (15b),

dx/dt 52a0x 1

������������������������
[(Ex 1 G)2 1 b2]

√
h, (16b)

that is, both are associated with the same Fokker–Planck
equation. Figure 3b illustrated how increasing the magnitude
of the stochastic forcing in (16b) affects the mean, variance,
skewness, and kurtosis of the system.

The particular relevance of system B in interpreting our
GFS experiments is that the stochastic perturbations P(x)r
in (4) are approximately of the form in (16a). To see this,
one may first approximate the anomalous parameterized
diabatic tendency as P′ 5 P2 P ’H (x2 x)1 «5Hx′ 1 «,
where P is the time-mean diabatic tendency, H is a regression
coefficient, and « is the regression residual. One may then
write

P(x)r 5 (P 1 P′)r ’ [Hx 1 (P 2 Hx)]r 1 «r

’ (Ex 1 G)h1 1 bh2, (17)

where the red noises r and «r with correlation time scales t1
and t2 and standard deviations s1 and s2 are approximated as
white noises r" s1

�����
2t1

√
h1 and «r " s2

�����
2t2

√
h2. Defining

E5Hs1

�����
2t1

√
, G5 (P 2Hx)s1

�����
2t1

√
, and b5 s2

�����
2t2

√
then

leads to the stochastic forcing form in (16a).
The differences between the GFS ensemble forecasts with

and without stochastic perturbations may thus be crudely inter-
preted in terms of the differences between systems B and A,
both of which are analytically tractable. The change Dx of x
in system B over short time intervals Dt may be expressed,
using (3), as

Dx 5 2 a0 2
1
2
E2

( )
x 1

1
2
EG

[ ]
Dt

1

������������������������
[(Ex 1 G)2 1 b2]

√
h

���
Dt

√
(18)

in which the noise-induced drift is seen to reduce the damping
rate to l 5 a0 2 0.5E2 from l 5 a0 in system A and also to

FIG. 11. (top) As in the middle row of Fig. 5, but showing the impact of the stochastic perturbations on the RMSE
and spread of v500 at day 5. (bottom) As in the bottom row of Fig. 9, but showing the impact of the stochastic pertur-
bations on the skewness S and excess kurtosis K of v500 at day 5.
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give rise to an additional constant forcing 0.5Eg. Both of these
effects alter the ensemble-mean forecasts in system B from
those in system A as

hx(t)|xini 5 e2ltxin 1
EG
2l

( 1 2 e2lt): (19)

Note that E2 must be less than 2a0 for system B to be stable
and yield stationary statistics. Its stationary moments can be
derived using the Fokker–Planck equation as

x 5 hxi 5 EG
2l

, (20a)

s2 5 h(x 2 x)2i 5 (G 1 Ex)2 1 b2

2l 2 E2 , (20b)

S 5
h(x 2 x)3i

s3 5
2E(G 1 Ex)
(l 2 E2)s , and (20c)

FIG. 12. As in Fig. 1, but showing the impacts on the RMSE and spread from stochastic perturbations to different as-
pects of the model physics. In each panel, the two groups of four upper and four lower curves respectively show the evo-
lution of RMSE and spread over the 15-day forecast range. The lowest RMSE and highest spread curves, which are iden-
tical to the corresponding curves in Fig. 1, show the results for the control forecasts with the full stochastic perturbations.
The successively higher RMSE and lower spread curves show the results when the stochastic perturbations to the vertical
diffusion tendencies (NO-VDSP), convection and radiation tendencies (NO-SPPT), and the specific humidity (NO-SP)
are successively, and cumulatively, switched off. The highest RMSE and lowest spread curves are identical to the corre-
sponding curves with no stochastic perturbations in Fig. 1. An additional dashed curve in all four panels shows the
RMSE of the control forecasts if only 40 of the 80 members are used to calculate the ensemble mean.
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K 5
h(x 2 x)4i

s4 2 3 5
3
2

l 1 E2

l 2 (3/2)E2

[ ]
S2 .

3
2
S2: (20d)

The stationary moments of system A are obtained by setting E
and G equal to 0 in (20). It is then obvious how the additional
CAM-noise forcing (Ex 1 G)h1 in system B not only increases
the variance but also changes the mean, skewness, and kurtosis.
The nondimensional parameter Ẽ2 5 E2/l plays a critical role
in determining the magnitude of these changes. Indeed, a neces-
sary condition for the nth statistical moment to exist at all, as evi-
dent from the denominators in (20), is Ẽ2 , 2/(n2 1).

Sardeshmukh et al. (2015) have shown that the skewness
and excess kurtosis of the probability distributions of large-
scale atmospheric anomalies are essentially due to CAM
noise forcing. In light of their analysis, the impacts of the
CAM-noise like stochastic perturbations in the GFS experi-
ments may be understood even better by considering the im-
pacts of increasing the magnitudes of E, G, and b in system B
by a factor

��
g

√
. 1, as done in section 3, than by contrasting

system B with system A. The magnitudes of all four moments
then increase as illustrated in Fig. 3b, both because of the
larger magnitudes of E, G, and b and a further reduction of l.
Additionally, it can be shown using (20) that the change DS in
S has the same sign as S, and for moderate values of

��������
g 2 1

√
is

given by DS5
��������
g 2 1

√( )
S. The change DK in K is then given

approximately by DK . 1.5D(S2) . 1.5(DS)2. All of these fea-
tures are evident in the GFS results for Precip and v500 in
Figs. 8 and 9. To a lesser extent, they are also evident in the
results for T2m in Fig. 10, although not in the equatorial belt
where both S and K are small.

This simple interpretive framework suggests that the multi-
plicative part of the CAM noise in (17) associated with E Þ 0

plays an important role in determining the stochastic impacts
on the mean, skewness, and kurtosis of the GFS forecast en-
sembles. Without E, the forcing in (17) would amount to just
increasing the additive noise forcing, a situation considered
for the linear system A and nonlinear system C in Fig. 3.
However, as already noted in section 3, system A would then
predict no change in skewness, and system C would predict
decreases in its magnitude, unlike the increases actually ob-
tained in the GFS experiments in Figs. 8–11.

Since E Þ 0 in (17) is based on the regression approxima-
tion P′ ’ Hx′, the multiplicative noises in the GFS experi-
ments may be identified with stochasticity in local diabatic
feedbacks (positive or negative) on the model variables. Al-
though a detailed discussion is beyond the scope of this pa-
per, the likeliest candidates for such stochastic feedbacks
are stochastic mechanical and thermal damping associated
with stochasticity in the vertical diffusion of momentum and
temperature, and also in cloud-radiative feedbacks, in the
model.

To illustrate, for each vertical mode the diffusion amounts
to a damping, P(x) ’ 2 a0yx, and its stochasticity can be
represented in (16a) with a multiplicative noise parameter
E52a0y s1

�����
2t1

√
as outlined above. Note that the GFS model

also includes an additional horizontal scale-dependent damp-
ing as an eighth-order hyperdiffusion that is not stochastically
perturbed in our experiments. The total deterministic damp-
ing rate for each horizontal wavenumber n may be repre-
sented in (16a) as a0 5 a0y 1 a0h[n(n 1 1)]4, where a0h is the
hyperdiffusion coefficient divided by the 8th power of Earth’s
radius. The nondimensional parameter Ẽ2 5 E2/l for each
vertical mode and horizontal wavenumber is then

Ẽ2 5 2a20y s
2
1t1/(a0 2 a20y s

2
1t1) : (21)

FIG. 13. (top) As in Fig. 6, but for day 15. (bottom) As in the top panels, but for day 15 in otherwise identical
forecast ensembles in which the specified correlation length scale of the random perturbations is reduced from 500
to 100 km.
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This parameter is arguably the single most important determi-
nant of the magnitude of the stochastic impacts on the ensemble-
mean, skewness, and kurtosis of the forecast ensembles, not
only in our GFS experiments but also generally in other
studies that use SPPT types of stochastic perturbations. It
explains why the impacts are larger if the amplitude s1 and
correlation time scale t1 of the perturbations r in (4) are in-
creased, and why they are smaller if their spatial correlation
scale is decreased, because then the perturbations act pref-
erentially on smaller scales (larger n) for which a0 in the de-
nominator of (21) is larger. It also explains why specifying
large amplitudes and correlation scales of r can cause nu-
merical instabilities in some studies, since this can violate
the condition Ẽ2 , 2 for the variance to exist [see (20b)].

6. Discussion and concluding remarks

Many previous studies have demonstrated improvement in
probabilistic weather forecast skill through increases in fore-
cast ensemble spread generated by randomizing the parame-
terized diabatic tendencies P(x) as in (4). In this paper we
have stressed that such randomizations can also have benefi-
cial impacts on the mean, skewness, and kurtosis of the fore-
cast ensemble distributions throughout the extended 15-day
forecast range. We have argued that the impacts on the en-
semble-mean forecasts arise, in effect, from noise-induced
drifts D in (3) that improve the model by contributing to the
deterministic tendency corrections Rd in (1). We have also
suggested, through (21) and (18), that to first order the noise-
induced drifts effectively reduce the damping of momentum,
temperature, and moisture. Such reductions in damping and
consequent reduction in system stability also imply increased
model sensitivity to external forcing at all time scales.

The idea that randomizing deterministic parameterizations
can have beneficial impacts, implying that the details of the
parameterizations may not matter beyond some point, can be
unpalatable to modelers who often spend years developing
them. One reaction has been that although simply “shaking a
model” may improve estimates of forecast uncertainty, it may
not amount to improving the model itself. We agree, and we
have argued that demonstrating reductions in ensemble-mean
forecast errors, as done here, is necessary to establish model
improvement. Another concern has been that introducing
random diabatic perturbations is “unphysical” in that it viola-
tes global energy and/or moisture conservation laws. We
agree that strict conservation is violated [and possibly also for
P(x) itself in many models, although this is rarely discussed].
However, since r is random in both space and time, the global
integral of rP(x) is small at individual time steps and even
smaller in time averages, so the violation is likely slight. This
is evidently the case in our GFS experiments, as illustrated in
Fig. 14 for global mean column precipitable water (PWAT).
Introducing stochastic perturbations in the model not only
does not increase the bias in global mean PWAT but actually
decreases it in the first 10 days of the forecasts! In any event,
one can argue that violation of strict global conservation con-
straints is not a fundamental concern, given that strict conser-
vation can always be achieved in principle by expressing the

diabatic tendencies as convergences of diabatic fluxes and
then perturbing the fluxes instead of the tendencies.

We should stress that the beneficial impacts of introducing
the rP(x) perturbations are distinct from those obtainable by
“improving” P(x) alone. This is because they are associated
with two distinct effects of the noise: an increase in forcing
(both stochastic and mean, through the noise-induced drift)
and a decrease in damping (through the noise-induced drift),
as explicitly indicated in (18)–(20) for our simple interpretive
model. The two effects cannot be mimicked even in principle
by modifying the deterministic parameterizations alone, that
is, by changing only the deterministic damping rate a0 in our
interpretive framework.

Stochastic parameterizations are often found to have simi-
lar impacts to those obtained by increasing model resolution
(e.g., Berner et al. 2012), but are of course much less compu-
tationally demanding. While this is good news, it can also be
interpreted, wrongly in our view, that stochastic parameteriza-
tion would become unnecessary at sufficiently high model res-
olution. Our reason for disagreement is that the specified
space and time scales of the random perturbations need to be
much larger than the ;70 km grid size and;20 min time step
of our model to generate substantial beneficial impacts on the
ensemble-mean forecasts. A similar remark applies to other
stochastic modeling studies as well. Such large-scale perturba-
tions are necessary to account for chaotic physics at even the
resolved scales, not just the unresolved scales.

Figure 15 schematically depicts the basic motivation, from
our perspective, for introducing fuzziness in model diabatic
tendencies. If a model’s parameterized diabatic tendency P(x, a)
with parameters a differs from the true diabatic tendency
Ptr(x, atr), then some correction is obviously necessary. The
question is how to proceed if the true tendency is both a
rapidly varying function of x and is highly sensitive to the
values of atr. Lacking precise knowledge of either, one possi-
bility is simply to approximate the true tendency as the
parameterized model tendency P(x, a) plus random noise
with a simple statistical structure, as done in stochastic param-
eterizations. “Model resolution” does not really enter into
this picture. One does need to be mindful if the model physics

FIG. 14. Ensemble-mean global-mean column precipitable water
(PWAT) in the control forecasts with stochastic perturbations
(solid curves) and the forecasts without stochastic perturbations
(dashed curves). Results are shown for 1-, 5-, 10-, and 15-day fore-
casts valid at the same calendar dates shown along the abscissa.
The lowest curve shows the evolution of PWAT in the verifying
analyses over the 6-week period.

S A RDE SHMUKH E T A L . 558315 AUGUST 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 01:52 PM UTC



are already chaotic to some degree and can statistically repre-
sent some portion of the true chaos, in which case one would
need to reduce the amplitude of the additional specified sto-
chastic perturbations to avoid the risk of “double counting.”
The fact that the spread curve lies below the error curve in
almost all forecasting systems is consistent with the idea that
the chaotic physics are underrepresented in most models. Ad-
ditionally, the fact that no stochastic parameterization scheme
that we are aware of raises the spread curve above the error
curve suggests that the risk of double counting is small.

In the perspective of Fig. 15, the overall uncertainty in P(x, a)
is associated with uncertainties in both the functional form of
P and the parameters a, that is, with both structural and para-
metric uncertainties. This overall uncertainty may be crudely
accounted for by adding a stochastic portion rP(x, a) to P(x, a)
as in the SPPT types of perturbations used in this study. To
what extent this can also be accomplished by perturbing only
the parameters a as in the alternative stochastic parameter per-
turbation (SPP) types of perturbation schemes used at some
modeling centers (Leutbecher et al. 2017) is still a matter of
debate. The two approaches are equivalent for treating the
uncertainty in simple linear damping processes, P(x, a)’ 2 ax,
since rP(x, a)5 2r(ax)5 2(ra)x.

A legitimate concern with both the SPPT and SPP types of
currently used stochastic perturbation schemes is the ad hoc
specification of the amplitudes and space and time scales of
the random perturbations r. There is currently no rigorous
physical basis for choosing their specific values, and from the
perspective of Fig. 15, there will likely never be one, owing to
the chaos in the complex interactions among the many differ-
ent types of diabatic processes in the atmosphere. One ratio-
nal way forward might be to at least constrain the covariance

structure of the noise empirically, by relating it say to the co-
variance structure of short-range forecast errors through (1).
This is a topic of current research.

We end by stressing that our study in no way diminishes the
continuing need to address well-known shortcomings of cur-
rent deterministic parameterizations of subgrid-scale diabatic
processes, as summarized by Stevens and Bony (2013) in their
paper “What are climate models missing?”. What it does sug-
gest is that part of what may be “missing” is some accounting
of the intractable complexity of rapid diabatic interactions in
the atmosphere, that is, the chaotic physics.
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APPENDIX

A Simple Derivation of the Noise-Induced Drift

The noise-induced drift in (3) associated with state-
dependent Wiener processes, whose time derivative is state-
dependentGaussianwhite noise, is a standard result in the theory
of stochastic processes (Gardiner 2004; VanKampen 2007). Here
we offer a simple intuitive understanding of its robustness even
when the noise is not strictly white. For simplicity we do this in
the one-dimensional case. The extension to multiple dimensions
is straightforward. Consider the system

dx/dt 5 a(x) 1 B(x)h, (A1)

where h is Gaussian red noise N(0, 12) with a small correla-
tion time scale t. The change dx of x over infinitesimal time
intervals dt is

dx 5 a(x)dt 1 B(x)h dt: (A2)

Now consider the change Dx over finite but still short inter-
vals Dt. Since averages of h over 2t are nearly independent,
one may divide Dt into k 5 Dt/(2t) independent noise sub-
intervals and treat the sample average h over Dt as a random
variable N(0, 12/k). The integral of (A2) from t to t 1 Dt may
then be approximated as

Dx 5 a(x)Dt 1 B(x) h Dt, (A3a)

5 a(x)Dt 1 B(x)f ���
2t

√ ���
Dt

√
, (A3b)

5 a(x)Dt 1 b(x)f ���
Dt

√
, (A3c)

FIG. 15. Basic motivation for stochastic parameterizations of cha-
otic diabatic tendencies. If the true tendencies Ptr (light-blue curve)
are both a rapidly varying function of the state variables x and
highly sensitive to the precise values of the parameters atr, they
may be approximated in model 1 by augmenting the model’s much
smoother parameterized tendencies P (red curve) with a stochastic
portion rP(x) indicated by the peach swath. If the parameterized
tendencies P in another model 2 (black curve) are already some-
what chaotic, they may not need to be augmented by as large of a
stochastic swath as in model 1.
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where b(x)5 B(x) ���
2t

√
and f 5 N(0, 12) is a standard Gaussian

random variable. Approximating b(x) ’ [b(x)1 b(x1Dx)]/2
(consistent with the “Stratonovich interpretation”) and
b(x1Dx)’ b(x)1 (db/dx)Dx and rearranging gives

Dx 5 a(x)Dt 1 b(x)f ���
Dt

√[ ]
1

1
2
db
dx

Dxf
���
Dt

√
: (A4)

Approximating Dx on the right-hand side as Dx5 a(x)Dt1
b(x)f ���

Dt
√

and rearranging again gives, finally,

Dx 5 a(x) 1 f2 1
2
db(x)
dx

b(x)
[ ]

Dt 1 b(x)f ���
Dt

√
, (A5)

where a third-order term in powers of
���
Dt

√
involving a(x) ���

Dt
√( )3

has been neglected (consistent with “Ito’s lemma”). Equation
(A5) is identical to the one-dimensional form of (3), except for
the factor f2 in front of the noise-induced drift inside the square
brackets. Although this factor is random, it has a mean of 1 and
is always positive, so (A5) always gives the correct sign, and
roughly the correct magnitude, of the noise-induced drift in (3).

In a more rigorous derivation, B(x)h is not approximated
as B(x) h in the integral of the noise term in (A3a), and
the random factor f2 in (A5) is replaced by h2 , which is
equal to 1 in the limit k " ‘ of the number k of indepen-
dent noise subintervals of Dt.

Last, note that since f represents a sample mean over Dt, it
can be specified as a different constant number within each in-
terval Dt if the system is marched forward in time, or more
smoothly as red noise with a correlation time scale of order
Dt. In the atmosphere, one may reasonably expect the validity
of (A3a) to extend over intervals Dt comparable to Rossby
adjustment time scales (;3 h in the extratropics and much
longer in the tropics), partly justifying the choice of 6 h for the
noise correlation time scale in our GFS experiments.
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